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Abstract. Problem definition: We use a realistically large, publicly available data set from
a global fintech lender to simulate the impact of different antidiscrimination laws and their
corresponding data management and model-building regimes on gender-based discrimi-
nation in the nonmortgage fintech lending setting. Academic/practical relevance: Our
paper extends the conceptual understanding of model-based discrimination from computer
science to a realistic context that simulates the situations faced by fintech lenders in practice,
where advanced machine learning (ML) techniques are used with high-dimensional, fea-
ture-rich, highly multicollinear data. We provide technically and legally permissible
approaches for firms to reduce discrimination across different antidiscrimination regimes
whilst managing profitability. Methodology: We train statistical and ML models on a large
and realistically rich publicly available data set to simulate different antidiscrimination
regimes and measure their impact on model quality and firm profitability. We use ML
explainability techniques to understand the drivers of ML discrimination. Results: We find
that regimes that prohibit the use of gender (like those in the United States) substantially
increase discrimination and slightly decrease firm profitability. We observe that MLmodels
are less discriminatory, of better predictive quality, and more profitable compared with tra-
ditional statistical models like logistic regression. Unlike omitted variable bias—which
drives discrimination in statistical models—ML discrimination is driven by changes in the
model training procedure, including feature engineering and feature selection, when gender
is excluded. We observe that down sampling the training data to rebalance gender, gender-
aware hyperparameter selection, and up sampling the training data to rebalance gender all
reduce discrimination, with varying trade-offs in predictive quality and firm profitability.
Probabilistic gender proxy modeling (imputing applicant gender) further reduces discrimi-
nationwith negligible impact on predictive quality and a slight increase in firm profitability.
Managerial implications: A rethink is required of the antidiscrimination laws, specifically
with respect to the collection and use of protected attributes for ML models. Firms should
be able to collect protected attributes to, at minimum, measure discrimination and ideally,
take steps to reduce it. Increased data access should come with greater accountability for
firms.

History: This paper has been accepted for the Manufacturing & Service Operations Management Special
Section on Responsible Research in Operations Management.
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1. Introduction
Algorithms and artificial intelligence (AI) are funda-
mentally transforming the way organizations make
decisions. Their adoption, however, has been accom-
panied by reports of discrimination from consumers

and the media. The reports refer to discrimination as
being what is ethically problematic as opposed to
what is illegal, essentially a noncomparative wrong,
whereby an algorithm fails to treat a group of individ-
uals the way they feel they are entitled to be treated
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(Hellman 2016). As such, in this paper we define and
measure discrimination not by what is legal but rather,
by how a model treats a group of individuals. Although
an ethically centered definition is salient, most countries
have adopted antidiscrimination laws to increase equal-
ity for protected groups, each with their own unique
legal definition of discrimination. Rapid advances in AI
have, however, outpaced changes in these laws (Baro-
cas and Selbst 2016), resulting in regulations that may
paradoxically hurt rather than help the groups they are
supposed to protect.

For example, consider the Apple Card, which was
accused by consumers and the media of discrimination
against women; it declined a woman’s application for a
credit line increase while granting one to her husband,
resulting in a 20 times difference between them, even
though she “had a better credit score and other factors
in her favor” (Vigdor 2019). In response to the accu-
sation, Goldman Sachs, a partner in the Apple Card
venture, stated: “we have not and never will make deci-
sions based on factors like gender … we do not know
your gender or marital status” (Franck 2019). This state-
ment is not surprising; the United States (U.S.) Equal
Credit Opportunity Act (ECOA) prohibits the use (and
even collection) of protected attributes, like gender, for
nonmortgage lending decisions, and a report by the
New York State Department of Financial Services (2021)
found no violations of fair lending by the Apple Card
venture. The outcome, however, is paradoxical; adher-
ing to the existing antidiscrimination laws and the
data management and model-building practices they
imply could produce ethically problematic outcomes.

The antidiscrimination laws with respect to gender
and credit differ across countries. Their exact language
varies greatly and is not a subject of this investigation,
but their data management and model-building guid-
ance imply three main regimes (discussed in detail in
Online Appendix S1).

1. Regime 1 (e.g., Singapore) allows for the collection
and use of gender data in AI models.

2. Regime 2 (e.g., the European Union (EU)) allows
for the collection of gender but prohibits the use of gen-
der as a feature in the training and screening models
used for individual lending decisions.

3. Regime 3 (e.g., the United States (US)) prohibits
the collection and thus, also the use of gender data.

In this paper, we use a realistically large publicly
available data set from a global fintech lender—Home
Credit—to simulate the impact of these regimes (and
the corresponding implications for data management
and model building) on gender discrimination. We
examine gender, the characteristics of women and men
that are socially constructed, as opposed to sex, the
characteristics that are biologically determined (WHO/
Europe 2022), given that the majority of global antidis-
crimination efforts focus on “gender equality.” We use
the terms “women” and “men” throughout the paper,
which are consistent with our available data: gender.
Further, we focus on gender and not race or other
attributes because of its universality; our choices do not
in any way diminish the need to investigate discrimina-
tion in other contexts and with other data sets.

Our study follows how a consumer lending fintech
firm makes loan accept/reject decisions (see Figure 1
for a schematic). First, a lender uses data about past
borrowers to train a model that predicts whether a cus-
tomer will repay or default if given a loan, a task gen-
erally referred to as binary classification (Henley and
Hand 1997). Because default is uncertain, the model
predicts a numeric score, which can be intuitively
interpreted as the predicted probability of default.
Note that the predicted default scores from different
model classes (e.g., logistic regression (LR) versus
tree-based ensembles) may not necessarily be cali-
brated (i.e., a predicted score of 0.3 from one model
may not be equivalent to 0.3 from a different model)
and therefore, are not directly comparable. Second,
the firm uses the trained model (Kleinberg et al. 2020
refer to it as a screening model) to predict defaults for
the new applicants, resulting in a set of applicant
default probability predictions. Third, the predicted
probabilities are compared with a classification
threshold (τ) to arrive at a binary default classifica-
tion; applicants are rejected if the predicted probabil-
ity is above the threshold and issued credit otherwise
(Lessmann et al. 2015). This threshold is optimized
given the economics of the loan (i.e., the cost of
default and revenue from repayment).

Figure 1. Schematic View of the Three-Step Fintech LendingModeling Process
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Ideally, a firm would measure discrimination by
comparing the probability that the screening model
rejects someone who will not pay back the loan across
groups. However, because a firm cannot possibly
know the payment outcomes for a rejected applicant,
we must use an alternative measure using available
data. We use two such measures of discrimination
between models: positive predictive value (PPV)
(Chouldechova 2017), which measures a model’s abil-
ity to correctly predict outcomes for one group condi-
tional on the known outcome compared with another
group, and within-group mean difference (WMGD)
(Žliobaitė 2017), the difference in the mean predicted
default rate for the protected class between models.

A key observation that underlies our investigation
is as follows. Under regime 1, a firm’s training and
screening models have access to gender and the
numerous machine learning (ML) consequences asso-
ciated with it, such as feature engineering, hyperpara-
meter tuning, etc. (see Sections 1.2 and 6.2), whereas
under regime 2, the use of gender is restricted; under
regime 3, it is prohibited entirely. These regimes,
therefore, lead to two model types: model 1 (with gen-
der per regime 1) and model 2 (without gender per
regimes 2 and 3). We specify what the “model” is in
Section 3.1, but importantly, models 1 and 2 differ in
that their applicant default probability predictions
vary; consequently, their optimal thresholds differ as
well. Hence, the exact same applicant could be issued
credit under one regime and rejected under another.
We study whether this affects men and women differ-
ently, dissect why the differences occur, and show
what firms under different regimes can do to reduce
the discrimination while quantifying the associated
impact on profitability.

The insights from our paper can be classified into
three categories: (1) the impact of antidiscrimination
regimes on gender-based discrimination, (2) the driv-
ers of statistical and machine learning discrimination,
and (3) the possible approaches to reduce machine
learning discrimination.

1.1. Impact of Antidiscrimination Regimes on
Gender-Based Discrimination

We find that regimes 2 and 3, which force the exclu-
sion of gender in the screening models (i.e., the firm
must use model 2), do not significantly impact predic-
tive quality measured by area under the curve (AUC).
Despite not impacting predictive quality, however, the
exclusion of gender negatively impacts firm profitabil-
ity, which is, on average, 0.25% lower for the model
without gender. Most shockingly, the gender exclusion
leads to, on average, a 285.04% increase in gender dis-
crimination (measured by PPV) (Section 3.1) in the top-
performing ML model (“average blender” (AB), which

is discussed in Section 4.3) trained on our data. This
finding is summarized in Observation 1 in Section 5.

The paradoxical discriminatory effects of antidiscrimi-
nation regimes have been investigated before in both
computer science and financial economics. In the com-
puter science literature, most notably, Kleinberg et al.
(2018) use a conceptual framework and a regression-
based empirical example to show that algorithmic
decision makers should prefer a model that includes pro-
tected attributes, such as race or gender, given they are
useful for predicting the outcome. Other works in com-
puter science have used a combination of conceptual
frameworks and small-scale empirical examples (<10
features, low multicollinear data sets) to show that,
absent legal constraints, protected attributes should be
included to reduce discrimination and improve predic-
tive quality (Žliobaitė and Custers 2016, Lipton et al.
2018). We support this conceptual conclusion with
results from a realistic data set and a modeling process
that mimics a fintech’s operations.

In the financial economics literature, Chandler and
Ewert (1976) evaluate the ECOA and find that the
operational modeling guidance, which prohibits the
use and collection of gender, creates a detrimental
increase in the rejection rates of women compared
with regression models that use gender. Andreeva
and Matuszyk (2019) use classical statistical techni-
ques and find that the EU Gender Directive, which
prohibits the use of gender as a feature in the training
and screening models, leads to a greater increase in
rejection rates for women compared with men versus
models that include gender. In Section 5, we extend
these analyses into the modern ML setting, exploring
multiple nuances stemming from the use of ML meth-
ods. For robustness, we also replicate the statistical
approach of Andreeva and Matuszyk (2019) on our
data in Online Appendix S2.

1.2. Drivers of Statistical and Machine Learning
Discrimination

What drives discrimination?Moreover, what drives the
differences in discrimination between statistical and
ML models? One intuitive explanation, from the tradi-
tional statistics and econometrics literature, is omitted
variable bias (OVB) (Wooldridge 2015); indeed, regimes
2 and 3 remove gender from the variable set, changing
the model coefficients for the remaining variables.
Andreeva and Matuszyk (2019) use a traditional statis-
tical modeling approach (discussed in Section 4.3) and
empirically show that the data collection and modeling
guidance of regimes 2 and 3 indeed create OVB; when
trained on data with women as the minority—as is
common in lending—the exclusion of gender leads to
coefficient estimates dominated by men, the less credit
worthy group, which in turn, disproportionately in-
creases the rejection rates of women. Using a conceptual

Kelley et al.: Antidiscrimination Laws, Artificial Intelligence, and Gender Bias
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modeling framework, Žliobaitė and Custers (2016) and
Kleinberg et al. (2018) similarly show that regime 2 and
3 regulations, which prohibit the use of protected attrib-
utes, create OVB if those features have explanatory
power, leading to discrimination.

This traditional statistics view of OVB, however,
makes several simplifying assumptions that are not
true for a fintech that uses modernML. Kleinberg et al.
(2020) extend beyond OVB and suggest that algorith-
mic discrimination can come from three places in the
modern ML process: the choice of outcome measure,
the choice of input variables, and the construction of
the model training procedure. Utilizing this frame-
work, we detail how the specifics of a fintech’s opera-
tions could introduce discrimination within these
three elements.

1. Choice of outcome measure. The choice of default
probability as the outcome measure is well founded in
the lending space (Henley and Hand 1997) and does
not change in ML; therefore, the use of modern ML
does not introduce discrimination through the choice
of outcomemeasure.

2. Choice of input variables. The various antidiscri-
mination regimes do not differ in their guidance for tra-
ditional statistical and machine learning models, so the
choice of input variables does not change between the
two modeling processes; gender is either included as a
feature in the training and screening models (per
regime 1) or excluded (per regimes 2 and 3).

3. Construction of the model training procedure. Recall
from Figure 1 that borrower data are used to train the
training model, a process that can be summarized at a
more granular level by the crossindustry standard
process for data mining (CRISP-DM) (Wirth and Hipp
2000), themost commonly usedmodel training procedure
in modern ML that is employed by our fintech industry

partners. Figure 2 depicts the details of CRISP-DM and the
additional modeling steps introduced into the training
procedure (white in Figure 2). The removal of gender, per
regimes 2 and 3, affects each of these additional steps and
introduces discrimination that is not captured byOVB.

a. Feature engineering. Having access to the gen-
der variable allows for the creation of new varia-
bles or features, including interactions (e.g., “gender
× income”) and binning (e.g., “�IF(age > 65,1,0)”).
In Section 6.2, permutation importance analysis
shows that approximately 20% of the most impact-
ful features in model 1 (with gender) are engi-
neered using gender. In contrast, these features are
not even considered by model 2 (without gender)
and hence, cannot be “omitted” by definition.

b. Algorithm selection. Having access to gender
could change the top-performing algorithm. For
example, a regularized logistic regression may out-
perform a random forest model on data without
gender (and the resultant engineered features) but
may perform worse with gender, leading to differ-
ences in discrimination between algorithms.

c. Feature selection. Access to gender in model
training can change the set of features that are
selected to be “in the model.” For example, with
access to gender, the model may select “age” during
feature selection; when gender is excluded, how-
ever, it may exclude “age.” Indeed, in Section 6.2,
we observe that, when gender is excluded, the algo-
rithm also excludes certain features, which we refer
to as gender reliant. In their place, the algorithm
selects other features, which we refer to as gender
redundant. Using Shapley additive explanations
(SHAP) values and SHAP interaction values (Lund-
berg and Lee 2017, Lundberg et al. 2019), we find
that the gender-reliant features are on average 19

Figure 2. The Six-StepMachine LearningModeling Process Compared with the Three-Step Traditional Statistical Modeling
Process ArrangedAccording to the CRISP-DM Framework

Kelley et al.: Antidiscrimination Laws, Artificial Intelligence, and Gender Bias
3042 Manufacturing & Service Operations Management, 2022, vol. 24, no. 6, pp. 3039–3059, © 2022 The Author(s)

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

11
2.

20
1.

16
4.

34
] 

on
 3

0 
N

ov
em

be
r 

20
22

, a
t 1

8:
39

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



times more important for women compared with
men. As such, when gender is excluded, so too are
the gender-reliant features, thereby increasing dis-
crimination against women.
d. Hyperparameter selection. Many ML models,

such as random forest, have numerous parameters
that guide learning rather than are learned from
data directly: for example, the number of trees or
the size of each tree. Such parameters are called
“hyperparameters.” Having access to gender and
the resultant engineered features can result in a dif-
ferent set of hyperparameters, even if the algorithm
itself is the same. Our analyses in Section 7 show
that selecting the hyperparameters when gender is
available can change model predictions and reduce
discrimination, even if gender is excluded in the
learning model parameter estimation.

Incorporating the differences in the construction of
the model training procedure, when gender is
included (model 1), our top-performing “average
blender” ML model is 44.06% less discriminatory on
average (measured by PPV), of significantly better
predictive quality (+472 basis points (bps) AUC), and
on average 7.86% more profitable than the traditional
statistical logistic regression model. When gender is
excluded (model 2), the AB model remains less dis-
criminatory (on average by 9.56% per PPV) across
thresholds, with greater predictive quality (+487 bps
AUC), and it is on average 7.60% more profitable
compared with the LR model. These findings are sum-
marized in Observations 2–5 in Section 5 and Obser-
vations 6–8 in Section 6. Together, they illustrate that
both firms and applicants should prefer ML models
over traditional statistical models in the nonmortgage
consumer fintech lending setting, as ML allows the
model to partially recover the negative impact of
excluding gender.

1.3. Possible Approaches to Reduce Machine
Learning Discrimination

In Section 7, we evaluate four possible approaches for
firms to reduce the gender discrimination given the
restrictions on the use and collection of gender
imposed under various regimes.

1. Down sampling the training data to rebalance gen-
der is a form of preprocessing (Kamiran and Calders
2012). Observations are randomly removed from the
majority class (men) until counts are equal with the
minority group (women). Doing so is feasible under
regimes 1 and 2 and results on average in −4.54% dis-
crimination (PPV), −175 bps predictive quality, and
−4.47% average profitability in our data.

2. Gender-aware hyperparameter tuning is an
approach where model hyperparameters of the train-
ing model are tuned on data with the gender of past
borrowers. However, applicant gender is not used in

the screening model. This approach is model agnostic
and similar to the fair Bayesian optimization technique
(Perrone et al. 2021). It is feasible for firms under
regimes 1 and 2 and results on average in −37.73% dis-
crimination (PPV), −278 bps predictive quality, and
−4.42% average profitability in our data.

3. Up sampling the training data to rebalance gender
is an approach that involves collecting additional
observations from the minority class (women) to match
the count of the majority class (men) (see Chen et al.
2018). As gender must be collected, this approach is
feasible under regimes 1 and 2 and results on average
in −24.47% discrimination (PPV), no significant change
to predictive quality, and −1.46% average profitability
in our data.

4. Probabilistic gender proxy (PGP) modeling is an
approach that is feasible for firms operating across
multiple jurisdictions. A training model is created
(using data from a regime 1 or 2 country) to predict
gender for applicants in a regime 3 jurisdiction (where
gender is not permitted to be collected), and this gen-
der prediction is used as a feature in the screening
model; see Zhang (2018) and Chen et al. (2019) for PGP
used to predict race/ethnicity in lending. Although
quite effective in our data (on average −71.09% dis-
crimination (PPV), no significant change to predictive
quality, and +0.13% average profitability), this approach
is prohibited in the United States, an example of regime
3 (Chen et al. 2019).

These findings are summarized in Observations 9–12
in Section 7. Note that we reviewed several other
discrimination-reducing approaches, including generating
gender-specific models and using gender-specific thresh-
olds (Lipton et al. 2018); however, these approaches use
gender in both the training and the screening models and
treat the two genders differently in direct contradiction
with regime 2 and 3 guidance; we, therefore, excluded
them from consideration.

2. Related Literature
Our work is related to the study of discrimination in
three areas: operations management, financial eco-
nomics, and computer science.

2.1. Discrimination in Technology-Based Busi-
ness Operations

First, our work is related to empirical studies on
technology-based business operations (e.g., Cui et al.
2018, Cohen and Harsha 2020) and the discrimination
in which they proliferate: crowdfunding (Pope and
Sydnor 2011a, b; Younkin and Kuppuswamy 2018),
online auctions (Doleac and Stein 2013), social net-
works (Acquisti and Fong 2020), ride-sharing (Ge et al.
2020, Mejia and Parker 2021), online labor markets
(Chan and Wang 2018), online advertising (Lambrecht
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and Tucker 2019), online vacation rental marketplaces
(Cui et al. 2020), and healthcare treatment (Obermeyer
et al. 2019).

Of particular relevance for our study are the investi-
gations of discrimination in the use of machine learn-
ing algorithms. Lambrecht and Tucker (2019) find that
online advertising algorithms lead to automated gen-
der bias because of the higher economic valuation
assigned to the views of women. Obermeyer et al.
(2019) examine a commercial healthcare prediction
algorithm and find that it proliferates racial bias
because of biased training data.

Our work investigates the drivers of machine learn-
ing discrimination in a new operational setting—fin-
tech lending—and we contribute to the literature by 1)
studying the model training procedures and resulting
implications for firms as opposed to only the model
outputs; 2) exploring techniques to reduce the bias,
which are said to be overlooked (Mejia and Parker
2021); and 3) studying the impact of these discrimina-
tion reducing techniques on firm profitability. Lastly,
we believe that it is important to bring forward the
topics of gender equality and discrimination for oper-
ations management researchers because they are
aligned with both the Vision of the Responsible
Research in Business and Management (Cofounders
for RRBM 2017) and the United Nation’s Sustainable
Development Goals (Online Appendix S1).

2.2. Discrimination in Nonmortgage
Consumer Lending

Second, our work is related to the financial economics
literature on discrimination in consumer lending. The
vast majority of this empirical literature considers
mortgage lending (Bartlett et al. 2022, Fuster et al.
2022) because of data availability (Taylor 2011), which
differs from our nonmortgage context in three ways.
First, the lenders’ operating models are different.
Most mortgage fintech firms are intermediaries that
connect borrowers and lenders by structuring the loan
applications and leaving them on the platform to be
funded by individual or institutional lenders; they do
not make the loan accept/reject decisions. Second,
lenders in several major markets that make such deci-
sions use variations of the Fair Issac score and logistic
regression models, where discrimination is driven by
OVB. Third, the collection of gender data is not pro-
hibited for mortgage lenders in most jurisdictions.

For these reasons, most of the existing studies of lend-
ing discrimination are not directly relevant to our work,
with, to the best of our knowledge, only two studies that
are similar to ours: Chandler and Ewert (1976) evaluate
the impact of the ECOA in 1979 and Andreeva and
Matuszyk (2019) evaluate the impact of the EU Gender
Directive from the 2000s. They both find that the opera-
tional modeling guidance of the laws, which restrict the

use of gender in the training and screening models, cre-
ates a detrimental increase in the rejection rates of
women when compared with models that use gender.
Both of these works use proprietary datasets, preventing
investigation or replication of their results. They focus
on outdated statistical regressionmodels in a single legal
jurisdiction, do not produce a formal measure of dis-
crimination, and neither measure the impact on firm
profitability nor provide recommendations for firms to
reduce discrimination. Our unique public data and
modern ML approach addresses these shortcomings,
making our findingsmore operationally relevant for fin-
tech firms, regulators, and the public across several reg-
ulatory regimes.

2.3. Fairness in Machine Learning
Third, our work is related to the computer science
study of fairness in machine learning. A handful of
works have investigated the impact of excluding
protected attributes, like gender, on discrimination.
Kleinberg et al. (2018) and Lipton et al. (2018) explore
the impact of U.S. antidiscrimination laws and con-
clude that, absent legal constraints, a protected attrib-
ute should be included to decrease discrimination and
improve model accuracy. Žliobaitė and Custers (2016)
perform a comparable investigation in the context of
EU antidiscrimination laws and arrive at a similar
conclusion. Like Kleinberg et al. (2018), they conceptu-
ally explain the drivers of algorithmic discrimination
using the OVB framework. Although this arm of the
literature succinctly points out the discriminatory
effect of excluding protected attributes, these studies
lack domain-specific, realistic operational details. For
instance, Žliobaitė and Custers (2016) use a small-
scale salary data set with 52 observations and six vari-
ables. Although they admit it is small, it is difficult to
extend their OVB findings to a true operational, high-
dimensional, feature-rich, and highly multicollinear
data set used by fintechs to train ML models. In con-
trast, our study is operationally grounded; the data,
process, and models are selected to simulate those
used by fintech lenders, which allowed us to uncover
the gender-blind feature selection phenomenon. This
mechanism has not been discussed in the more gener-
alized computer science investigations. Further, we
are the first to provide an aggregated analysis across
regimes.

Kleinberg et al. (2020) extends beyond traditional
statistical models and OVB to suggest that algorithmic
bias can stem from three aspects of the ML modeling
process: the choice of outcome measure, the choice of
input variables, and the construction of the model
training procedure. We extend this conceptual frame-
work and empirically measure the algorithmic bias
introduced through a change in the construction of
the model training procedure (from LR to ML). Note
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that neither the choice of outcome measure (default
probability) nor the input variables (specifically with
respect to gender) change.

Further, although several other works suggest a
range of solutions to reduce discrimination through pre-
processing (e.g., Kamiran and Calders 2012; Chen et al.
2018, 2019), in processing (e.g., Zafar et al. 2019, Perrone
et al. 2021), and postprocessing (e.g., Hardt et al. 2016),
practitioners reported “struggling to apply existing
auditing and de-biasing methods in their contexts”
(Holstein et al. 2019, p. 2) and found there were limited
“domain-specific education resources, metrics, proc-
esses, and tools,” (Holstein et al. 2019, p. 9) as the major-
ity of computer science studies focus on nonbusiness
contexts, such as recidivism. Our business-oriented and
operationally relevant approach, again, directly ad-
dresses these concerns.

Finally, the theoretical progress in this literature
provides several useful concepts that we utilize in our
work, such as the fairness-accuracy trade-off (see
Žliobaitė 2015 for a summary discussion) and several
measures of discrimination (Berk et al. 2017, Choulde-
chova 2017, Žliobaitė 2017); see Section 3.1.

Summarizing our results vis-à-vis the existing litera-
ture, we build on a large body of work that established
a conceptual understanding of model-based discrimina-
tion (Žliobaitė and Custers 2016; Kleinberg et al. 2018,
2020; Lipton et al. 2018). We extend this understanding
to a realistic context that mimics situations faced by fin-
tech lenders in practice, where advanced nonregression
techniques are used with high-dimensional, feature-
rich, highly multicollinear data in conjunction with
sophisticated feature engineering. Further, we measure
the economic impact on firms, which has not previously
been explored. To what extent these practical elements
alter the conceptual findings about model-based dis-
crimination is unclear from prior research; our paper
presents an investigation that is relevant for firms,
consumers, and regulators around the world. In fact,
the insights from our work have already impacted the

policies and guidelines adopted by multiple financial
institutions and regulatory bodies.

3. Key Metrics: Discrimination, Predictive
Quality, and Firm Profitability

3.1. Discrimination Measure Selection
Prior literature proposes three main classes of discrimina-
tion measures: classification parity, calibration, and anti-
classification (Berk et al. 2017). Furthermore, it is well
known (Chouldechova 2017, Kleinberg et al. 2018) that
multiple measures cannot be simultaneously satisfied
unless model accuracy is perfect or base rates are equal
across groups, which are unrealistic assumptions. From
our knowledge of fintech lending and discussions with
industry partners, we determined that, to be practically rel-
evant for a fintech firm, a discrimination measure should
achieve these three conditions in order of importance.

1. Adjust for unequal base default rates between pro-
tected groups (e.g., a difference in default rates
between genders should be preserved as it ensures
groups are treated the way they are entitled to be
treated per the ethically centered definition of discrimi-
nation from consumers and the media; see Section 1);

2. Be calculated without an external risk score (as
there are no such risk scores available; credit scores are
not valid external scores as they are used as a feature in
the model); and

3. Be calculated with a known default outcome label
(which helps to preserve absolute default rates to
ensure the model predictions achieve comparable
default rates to historical values).

Table 1 provides a summary of measures and high-
lights two: PPV andWGMD. PPV satisfies all three condi-
tions, whereas WGMD is the only other measure that
adjusts for unequal based default rates (the most
important condition) and can be calculated without an
external risk score.

One potential weakness of these conditions is that
requiring a known default outcome label (condition (3))

Table 1. Summary of the Discrimination Measure Selection Rationale

Discrimination measures Reference
Adjusts for unequal base

default rates
Calculated without
external risk score

Calculated with a
known default
outcome label

Classification parity
Statistical parity Berk et al. (2017) X X
Equalized odds Hardt et al. (2016) X X
Treatment equality Berk et al. (2017) X X
Balance for the positive class Kleinberg et al. (2018) X X
Positive predictive value Chouldechova (2017) X X X
Mean difference Žliobaitė (2017) X
Within-group mean difference Adapted from Žliobaitė (2017) X X

Calibration Corbett-Davies and Goel (2018) X
Anticlassification Grgic-Hlaca et al. (2016) X
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means that a lender cannot measure discrimination in the
applicant group that was rejected; without the known
outcome label, they are faced with the selective or miss-
ing label problem (Lakkaraju et al. 2017). We address the
missing label problem with a sampling procedure called
augmentation (Hsia 1978), as discussed in Section 4.2.
However, given that WGMD does not require a known
default outcome label, it provides a useful alternative
measure of discrimination that avoids the selective labels
problem.We discuss both PPV andWGMD below.

Positive predictive value (Chouldechova 2017) rep-
resents the difference in the model’s ability to cor-
rectly predict default, conditional on actual default
between men and women. Given a classification
threshold, τ, discrimination measured by PPV(τ) is
the number of true-positive predictions (i.e., correctly
predicted defaults for men, TPM(τ)) divided by all
default predictions for men (i.e., the sum of TPM(τ)
and FPM(τ), the number of false-positive predictions
for men) minus the same ratio for women:

PPV(τ) � TPM(τ)
[TPM(τ) + FPM(τ)] −

TPW(τ)
[TPW(τ) + FPW(τ)] :

(1)

A PPV(τ) greater than zero denotes bias against
women, less than zero denotes bias against men, and
equal to zero indicates no discrimination. The use of
TPM(τ) and FPM(τ) values (e.g., for men) in the mathe-
matical definition aligns with our theoretical definition
of discrimination as a noncomparative wrong: a failure
to treat (predict) a group of individuals (one gender)
the way they are entitled to be treated (predicted cor-
rectly) (Hellman 2016). For brevity, we refer to PPV(τ)
as simply PPV throughout the paper.

Within-group mean difference (Žliobaitė 2017) me-
asures the difference in the mean predicted default
rate for the protected class, women, between models.
That is, if ŶiW(τ) � 1 denotes a default prediction for
woman i in our data set (as made by some model at
some threshold τ) and NW denotes the total number
of women in the data, then

WGMD(τ) �
∑NW

i�1 ŶiW(τ) � 1
NW

[ ]
ModelA

−
∑NW

i�1 ŶiW(τ) � 1
NW

[ ]
ModelB

: (2)

A WGMD(τ) value greater than zero denotes an
increase in discrimination against the protected class in
model A versus model B. A value less than zero
denotes a decrease in discrimination, and a value of
zero indicates no change in discrimination between the
models. For brevity, we refer to WGMD(τ) as simply
WGMD throughout the paper. Note that a known
default outcome is not required to calculate the positive

default predictions, increasing the generalizability of
the measure by avoiding the selective labels problem.

Throughout the paper, we compare discrimination
between models using PPV as our main measure, as it
achieves all three conditions (per Table 1), and WGMD
for robustness. We report the means and 95% confidence
intervals (95% CIs) across the 30-fold crossvalidation.
Both values are calculated in R using the ci function
from the gmodels package. For additional robustness,
we test the significance of the differences of the discrimi-
nation from each model across a range of thresholds
(5%–30%). We use the Shapiro–Wilk normality test to
determine if the differences are statistically significantly
different from the normal distribution. We then proceed
with a paired t test if the differences are normally distrib-
uted and a paired samples Wilcoxon test if they are not.
An α of 0.05 is used for all tests.

3.2. Model Predictive Quality Measure
We measure model predictive quality using the AUC—a
percentage calculated using predicted and known out-
comes, with higher numbers denoting better quality.
It is commonly used to measure lending model qual-
ity as it performs well with the imbalanced data sets
typical in the credit setting (Akkoç 2012, Lessmann
et al. 2015). We compare predictive quality between
models by reporting AUC and the 95% confidence
intervals computed using the DeLong method
(DeLong et al. 1988), with 2,000 stratified bootstraps.

3.3. Firm Profitability Measure
We measure firm profitability as the optimal profit
across classification thresholds (Akkoç 2012, Less-
mann et al. 2015). A firm receives revenue for each
applicant they grant credit who does not default (a
true-negative prediction) and incurs a cost when they
grant credit to someone who does default (a false-
negative prediction). We assume a firm is not
impacted by applicants they do not grant credit to
who would default (a true-positive prediction), and
for simplicity, assume they incur no opportunity cost
for rejecting an applicant who would not default (a
false-positive prediction). Profit at a given threshold
π(τ) is the revenue from repayment (R) times the
number of true-negative predictions at that threshold,
TN(τ), less the cost of default (C) times the number of
false-negative predictions at that threshold, FN(τ):

π(τ) � R × TN(τ) −C × FN(τ): (3)

To examine different operating scenarios, we consider
2,431 cost-to-revenue (C:R) pairs, covering the full
range of reported ratios (up to 35×) from the literature
(Altman et al. 1977, Stein 2005). To calculate the firm
optimal profitability π(τ∗) at each C:R ratio, we first
generate a 90% random sample of the out-of-sample
predictions and calculate the TN(τ) and FN(τ) counts
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across 9,500 thresholds from 0.01% to 0.95% in incre-
ments of 0.01%. We then calculate the profit for each
C:R ratio and every TN(τ)=FN(τ) pair and find the
maximum profit and corresponding optimal threshold
for each pair. We apply those optimal thresholds to
the 10% holdout and calculate the TN(τ) and FN(τ)
counts; then, we calculate the optimal profit given the
C and R for each threshold. We take the average of the
optimal profit across the 30 folds to calculate firm
profitability. We compare performance between mod-
els by reporting the mean difference of firm profit-
ability across all C:R ratios and the number and range
of the statistically significant differences calculated
using a two-sided paired t test with a 95% confidence
interval.

4. Data, Sampling, and
Analytical Approach

Given the choice of key metrics (discrimination, pre-
dictive quality, and firm profitability), we needed to
source data that had both gender and known default
outcomes for all observations. Real-world applicant
data do not, however, have complete known default
outcomes. Some applicants are rejected by the lender,
and therefore, default versus repayment is not
observed, a challenge referred to as the selective labels
problem (Lakkaraju et al. 2017). A naïve approach
would be to use the borrower data, which have com-
plete default outcome information. However, doing
so could introduce a bias as the borrower population
may not necessarily represent the applicant popula-
tion we are interested in measuring (Lakkaraju et al.
2017). To overcome this problem in practice, lenders
use reject inference techniques (Hand and Adams
2014) to incorporate data from rejected loan applicants
into the lending modeling process. There are four
reject inference techniques (Hand and Adams 2014):

1. augmentation, which adjusts the distribution of
borrowers to match the applicant population;

2. extrapolation, which estimates the outcome labels
of rejected cases using known features;

3. conducting experiments, in which lenders pur-
posely provide credit to individuals who they believe
will default to gather the missing label of these appli-
cants; and

4. gathering outcomes of the rejected applicants who
manage to obtain credit from another lender.

Our industry contacts confirmed that experiments
are too costly and therefore, rarely used. Furthermore,
privacy regulations restricted us from gathering the
outcomes of rejected applicants as the data are anony-
mized. We, therefore, selected augmentation as it is
model agnostic and relies only on resampling of the
testing data. This approach prevented additional
noise from being introduced to the outcomes, which

could have occurred if extrapolation was used. We
followed the well-defined augmentation methodology
from Hsia (1978).

4.1. Data Sourcing
We acquired real data for 307,507 borrowers from
Home Credit, a global fintech that operates in nine
countries under regime 1 and 2 jurisdictions, each
allowing for the collection of gender. Machine learn-
ing is an integral part of howHome Credit manages their
strategy, risk, products, funding, and customer life cycles
(https://www.homecredit.net/about-us/our-vision-and-
business-model.aspx); its importance led them to create
the “Home Credit Default Risk” competition on Kaggle
from which we source our data. At the time of writing,
the data were available at https://www.kaggle.com/c/
home-credit-default-risk/data. We used the competition
training data sets (gathered into one file with observa-
tions for each borrower) but excluded the testing data
set, as it was missing default outcomes and therefore,
could not be used for our study. Note that the competi-
tion’s rules prohibit using the data for published
research; Home Credit, however, granted us permission
to use the data for this study. Additional exploration of
the data and replication of our results are possible
through participation in the Kaggle competition.

4.2. Sampling: Reject Inference—Augmentation
It is critical to note that, because our data come from a
Kaggle competition, they exclude the records for the
rejected applicants (i.e., those who were denied credit
in the past), leading to the aforementioned selective
labels problem. To overcome this problem, we applied
a reject inference technique called augmentation (Hsia
1978), a common method used in both research (Hand
and Adams 2014) and industry. Augmentation adjusts
the borrower data (which importantly, include default
outcomes) to better reflect the applicant population.
Technically, we used the applicant data (provided by
our industry partner and not available on Kaggle) to
create two joint distributions (one of borrowers, one
of applicants) across the five most important predic-
tive features from the lending application form: gen-
der, age, income, occupation, and marital status.

Next, we measured the proportional differences
between borrowers and applicants across each of the
five key characteristics. Borrowers and applicants
were found to be statistically significantly different
(according to a two-proportion z test at an α of 0.05)
in their distribution across income and occupation,
whereas gender, age, and marital status were compara-
ble. Using this proportional difference information, we
down sampled the borrower data accordingly to create a
“look-alike” applicant data set with complete default out-
comes, which helps to address the selective labels problem
(see the schematic in Figure 3). The technical details and
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accompanying code for the augmentation sampling pro-
cedure can be found at the authors’ GitHub: https://
github.com/stephaniekelley/genderbias.

Because it is not practically feasible to perform the
augmentation sampling procedure using every varia-
ble (we select five key variables), it is likely that some
selection bias remains after the augmentation proce-
dure. As we use the same testing data set throughout
the paper, any selection bias would be present across
all models and would, therefore, not impact our quali-
tative findings. Additional selection biases could
remain in our results because of other selection steps
in the credit lending process, including who lenders
advertise to, who applies for credit, and which appli-
cants accept loans (Henley and Hand 1997). Although
these selection steps are operationally relevant to the
firm, they remain beyond the scope of this investiga-
tion as they require exceedingly rare data—data that
may not even be collected by firms—to analyze.

To replicate the training and testing steps from the
lending modeling process (Figure 3) throughout the
paper, we created two samples from the Home Credit
Borrower data (the sampling procedure is summar-
ized in Figure 4). First, per predictive modeling best
practices, we randomly split the Home Credit bor-
rower data into an 80% borrower training data set and
a 20% borrower testing data set.

1. From the borrower training data set, we generated
minority training data (20% women) created by ran-
domly down sampling women to better reflect the gen-
der imbalances present in borrower data sets available
to fintech lenders globally (Ongena and Popov 2016).
These data are used throughout the paper for training
models in the main analysis (Sections 5 and 6).

2. From the borrower testing data, we generated
look-alike applicant testing data (66.2% women), created
using the augmentation sampling procedure (discussed in
Section 4.2) to reduce the selective labels problem. These
data are used throughout the paper as input for the screen-
ing model to obtain “out-of-sample” predictions, provid-
ing a consistent comparison across keymetrics.

Across all samples, we observe women to be more cred-
itworthy than men with fewer observed defaults (~6.8%
and ~10.4% for training data, ~6.9% and ~10.5% for

testing data), in line with data from past empirical
investigations and reports on gender and lending
(D’Espallier et al. 2011).

4.3. Analytical Approach
Prior to presenting the results in Section 5, we review
two modeling processes that we use in the study to
simulate the model building of fintech lenders: tradi-
tional statistical modeling and machine learning.

We use LR as the “traditional statistical” model as it
is the preferred model of lenders (Thomas et al. 2017)
and was used in past lending discrimination studies.
To generate an LR model, a fintech firm would follow
the traditional statistical modeling process (intro-
duced in gray in Figure 2) by first collecting and clean-
ing the data. The data were originally used for an ML
competition, so we had to exclude some of the time
series features that did not adhere to the modeling
assumptions of LR, leaving us with a subset of 122
features (under regimes 1 or 2, where gender can be
collected) or 121 features (under regime 3, where gen-
der cannot be collected).

Following the standard methodology for data
cleaning of LR credit models used by Andreeva and
Matuszyk (2019), we coarse classified the continuous
features as follows. Features were first split into 10
intervals, adjacent intervals with similar default rates
were manually merged, and separate coarse classes
were generated for missing observations. Small cate-
gories were then grouped into categorical variables
and transformed into binary dummy variables, with
the largest category removed to avoid identification
issues. Per Andreeva and Matuszyk (2019), we trained
an LR model and manually selected features that
were significant at an α of 0.05 in the model with gen-
der; then, we excluded gender from this data set to
generate the genderless feature set. These features
were then used to train the LR training model, result-
ing in the learning model parameter estimation, the
results of which are discussed in Section 5 onward.

The ML process introduces three additional steps: fea-
ture engineering, algorithm selection, and hyperparameter
tuning (recall Figure 2 and Section 1.2). We started with
the same 122 features (or 121 in regime 3) from the LR

Figure 3. Schematic View of the Integration of the Augmentation Sampling Procedure into the Three-Step Fintech Lending
Modeling Process
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data, with no further data cleaning. We then proceeded to
feature engineering, whereby more features were gener-
ated based on interactions and/or transformations of
the original feature set. We used techniques inspired by
the publicly available code of the top-ranking teams in the
Kaggle competition to gather features into a format that
could be used by MLmodels and generated several ratios
between the features to improve predictive performance.
This resulted in 744 features (regimes 1 or 2) or 743 fea-
tures excluding gender (regime 3).

We then compared over 50 ML models (including
extreme gradient boosting, generalized additive model,
elastic net, light gradient boosted tree, kernel support
vector machine, random forest, naïve Bayes, and a neu-
ral network) in DataRobot, a commercially available
automated ML platform. We selected the algorithm
with the best predictive quality (measured by the five-
fold crossvalidated AUC reported in DataRobot, a met-
ric we discuss in Section 3.2). Access to DataRobot can
be obtained through their Academic Support Program:
https://www.datarobot.com/success/academic-support-
program/.

The top-performing DataRobot algorithm was AB,
an ensemble classifier that averages the predictions
from multiple models—in our case, several forms of
XGBoost and light gradient boosting models—each
with strong predictive quality. Ensemble models,
like the AB, often have stronger predictive quality
compared with individual models in credit lending
(Lessmann et al. 2015). The algorithm then performed
automated feature selection (as opposed to the manual
feature selection performed in the traditional statistical
modeling process); explanatory features were extracted
for use in the final learning model parameter estimation.
The algorithm next tuned hyperparameters, modeling
values used to further improve the predictive quality of
the chosen algorithm, and then, the final learning model

parameter estimation occurred, the results of which are
discussed in Section 5 onward.

In Section 6.2, we introduce a single XGBoost tree
ensemble model to support our investigation of the driv-
ers of ML discrimination. We introduce this second ML
model because the explainability techniques required for
our analysis (SHAP values and SHAP interaction values)
can only be calculated with access to the full model train-
ing process (not possible in DataRobot) and are designed
for single-class ensembles, like XGBoost, rather than mul-
ticlass ensembles, like the AB (Lundberg and Lee 2017).
Our XGBoost model is trained in R using the xgboost
package. The Home Credit competition on Kaggle pro-
vides a practically relevant external measure of model
quality via the competition leaderboard; our model
would have landed in the top 10 of 7,000+ models in the
Kaggle competition, illustrating that the model is highly
competitive with other state-of-the-art models. As Klein-
berg et al. (2020) note, a firm can never know the true pre-
diction function, but the closer the algorithm is to the true
function (i.e., the better the predictive quality), the lower
the bias will be. So, our top-ranked model is likely one of
the least biased models possible. The codes for this model
and for our LR model also trained in R are available on
GitHub: https://github.com/stephaniekelley/genderbias.

5. Impact of Antidiscrimination Regimes
on Gender-Based Discrimination

In this section, we compare the impact of the three
regimes on both ML and LR models and make five
observations (Observations 1–5), which are summar-
ized in Table 2.

5.1. Impact of Gender Exclusion on Machine
Learning Models

In line with what a fintech lender would do in prac-
tice, we follow the ML modeling process discussed in

Figure 4. Schematic View of the Sampling Procedure Incorporated into Steps 1 and 2 of the Three-Step Fintech Lending
Modeling Process
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Section 4.3 and train a model on the minority training
data (discussed in Section 4.2) to generate a default
prediction score for each new applicant. Under regime 1,
the firm can use gender as a feature in training and
screening models (resulting in model 1), whereas those
under regimes 2 and 3 are restricted in the use of gender
as a feature (resulting in model 2).

Observation 1. We start by examining the impact of
removing gender from the average blender model
(AB:M2) compared with the same model with gender
(AB:M1). We find that discrimination measured by
PPV increases by 285.04%, predictive quality is not
impacted, and firm profitability decreases by 0.25%
(see Observation 1 and Table 2). Discrimination is
visualized in Figure 5(a) for PPV and Figure 5(b) for
WGMD. The key implication is that the operational
guidance to exclude gender as a feature in training
and screening models prescribed by regimes 2 and 3

leads to increased discrimination and decreased firm
profitability compared with regime 1, which allows for
the use of gender. This negative impact occurs in both
ML and LR models (the results for which are included
in Online Appendix S2 for brevity). The results are
troubling as they demonstrate that regimes 2 and 3
create a detrimental outcome for both lending appli-
cants (increased discrimination) and fintech lenders
(decreased firm profitability), confirming the reports
of automated bias in fintech lending that motivated
our work.

6. Drivers of Statistical and Machine
Learning Discrimination

6.1. Comparison of Discrimination in Traditional
Statistical and Machine Learning Models

Given the discriminatory impact of excluding gender,
we examine whether the lending applicants and fintech

Table 2. Observations 1–5: A Comparison of Lending Models Across Discrimination (PPV and WGMD), Predictive Quality
(AUC), and Firm Profitability (Average Optimal Profit)

Observation Model
Discrimination

(PPV)
Discrimination

(WGMD)
Predictive quality

(AUC)

Firm profitability
(average optimal

profit)

Compared with the average blender model with gender (AB:M1)
Observation 1 AB:M2 +285.04%

[51.72%−1,011.46%]a

(see Figure 5(a))

+34.75%
[17.37%−42.93%]a

(see Figure 5(b))

Not impacted:
77.97%

[77.16%−78.79%] vs.
AB:M1: 78.06%
[77.24%−78.88%]

−0.25%b

Compared with the logistic regression model with gender (LR:M1)
Observation 2 AB:M1 −44.06%

[−127.53%−+2.60%]c

(see Figure 6(a))

Inapplicabled +472 bps: 78.06%
[77.24%−78.88%] vs.

LR:M1: 73.34%
[72.46%−74.22%]

+7.86%e

Observation 3 AB(STAT):M1 −16.32%
[−54.66%−+56.75%]a

(see Figure 6(a))

Inapplicabled +192 bps: 75.26%
[74.41%−76.12%] vs.

LR:M1: 73.34%
[72.46%−74.22%]

+3.92%f

Compared with the logistic regression model without gender (LR:M2)
Observation 4 AB:M2 −9.56%

[−36.87%−+13.15%]a

(see Figure 6(b))

Inapplicabled +487 bps: 77.97%
[77.16%−78.79%] vs.

LR:M2 73.10%
[72.22%−73.98%]

+7.60%g

Observation 5 AB(STAT):M2 Is of comparable
discrimination (see

Figure 6(b))

Inapplicabled +200 bps: 75.10%
[74.24%−75.59%] vs.

LR:M2: 73.10%
[72.22%−73.98%]

+4.19%h

aAcross thresholds (5%–30%), the differences are statistically significant (p < 0.01, paired t test; see Section 3.1 for details).
b11.11% of the profit differences are statistically significant, 23% are negative differences (−2.43% to −1.19%), and 77% are positive
(0.02%–23%).
cAcross thresholds (5%–30%), the differences are statistically significant (p < 0.01, paired samplesWilcoxon test).
dDiscrimination (WGMD) is inapplicable when comparing AB and LR models as it does not adjust for the lack of calibration between the
model predictions, which are from two different model families (see Section 1 for details).
e89.88% of the profit differences are statistically significant, 98% are positive differences (0.04%–68.20%), and 2% are negative (−0.006% to−0.005%).
f82.06% of the profit differences are statistically significant, 93% are positive differences (0.06%–51.10%), and 7% are negative (−0.006% to−0.005%).
g90.58% of the profit differences are statistically significant (0.02%–63.50%).
h77.87% of the profit differences are statistically statistically significant (0.03%–51.30%).
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firms would be better off (i.e., observe lower levels of
discrimination, higher predictive quality, and higher
firm profitability) using LR or ML models. To do so, we
compare the LR and ABmodels, with gender (regime 1)
and without gender (regimes 2 and 3), trained on the
minority training data.

Observation2. We compare the average blender model
with gender (AB:M1) to the logistic regression model
with gender (LR:M1) and find that discrimination
measured by PPV decreases by 44.06%, predictive
quality increases by 472 bps, and firm profitability
increases by 7.86% (see Observation 2 and Table 2).
Discrimination (PPV) is visualized in Figure 6(a). The

key implication is that when gender is used in the train-
ing and screening models (per regime 1), the AB model
is less discriminatory, is of better predictive quality, and
produces greater profitability than the LR model.

From our understanding of the traditional statistical
modeling and ML modeling processes (Section 4.3),
we know that the results from Observation 2 occur for
two reasons: 1) a change in the model (LR to AB) and 2)
access to a larger ML feature set.

Observation 3. For robustness, we compare the results
of a second AB model trained on the smaller tradi-
tional statistical feature set used by the LR model
(AB(STAT):M1) with the LR model with gender

Figure 5. (Color online) (a) Discrimination Measured by PPV of AB Models with Gender (AB:M1) and Without Gender
(AB:M2). (b) Discrimination Measured by WGMD of AB Models with Gender (AB:M1) and Without Gender (AB:M2)

Figure 6. (Color online) (a) DiscriminationMeasured by PPV of LR and ABModels with Gender (LR:M1, AB:M1) and the AB
Model Trained on the Traditional Statistical Data Set with Gender (AB(STAT):M1). (b) Discrimination Measured by PPV of
LR and AB Models Without Gender (LR:M2, AB:M2) and the AB Model Trained on the Traditional Statistical Data Set Without
Gender (AB(STAT):M2)
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(LR:M1). This comparison allows us to observe the
impact of a change in the model (LR to AB) by itself.
We find that this change from LR to AB decreases
discrimination measured by PPV by 16.32%,
increases predictive quality by 192 bps, and increases
firm profitability by 3.92% (Observation 3 and Table
2). Discrimination (PPV) is visualized in Figure 6(a).
The key implication is that even on the traditional
statistical feature set with fewer engineered features,
the AB model is less discriminatory, is of better pre-
dictive quality, and produces greater profitability
than the LR model. This finding suggests that under
regime 1, both lenders and applicants should prefer
ML over LR models.

Observation 4. Next, we investigate whether lenders
and applicants would be better off with ML models
under regimes 2 and 3, when gender is not included
as a feature in the training and screening models. To
do so, we compare the impact of using an average
blender model without gender (AB:M2) versus a
logistic regression model without gender (LR:M2). We
find that discrimination measured by PPV decreases
by 9.56%, predictive quality increases by 487 bps, and
firm profitability increases by 7.60% (Observation 4
and Table 2). Discrimination (PPV) is also visualized
in Figure 6(b). The key implication is that without
access to gender (per regimes 2 and 3), both firms and
customers should prefer the AB model as it is less dis-
criminatory, is of better predictive quality, and produ-
ces greater firm profitability compared with LR.

Observation 5. For robustness, as we did with model 1,
we also compare an AB model trained on the tradi-
tional statistical feature set used by the LR model
without gender (AB(STAT):M2) with an LR model
without gender (LR:M2). We find that discrimination
measured by PPV is comparable, predictive quality
increases by 200 bps, and firm profitability increases
by 4.19% (Observation 5 and Table 2). The impact on
discrimination (PPV) is illustrated in Figure 6(b). The
key implication is that although the AB model trained
on the traditional statistical feature set used by the LR
model is of better predictive quality and greater prof-
itability, it is of comparable discrimination to the LR
model without gender, as it does not have access to
the full feature engineered data set.

In aggregate, Observations 2–5 illustrate that, trained
on the full feature engineered data set, the AB model
is less discriminatory and of greater predictive quality
and profitability compared with the LR model both
when gender is included and when gender is excluded.
Trained on the nonengineered, traditional statistical fea-
ture set, the AB model is of better predictive quality and
greater profitability compared with the LR model,
regardless of whether gender is included; however, it is

of comparable discrimination, suggesting that feature
engineering has a significant impact on reducing dis-
crimination. This finding demonstrates that both fintech
firms and lending applicants would benefit from the use
of ML models in place of traditional statistical models,
like LR, but the greatest decrease in discrimination relies
on the complete ML process (particularly the feature
engineering, as discussed in Section 4.3), and the inclu-
sion of gender.

6.2. Using ML Explainability Techniques to
Uncover the Drivers of ML Discrimination

The previous results illustrate that, under regimes 2
and 3, even the top-performing ML model (AB:M2)
still proliferates gender discrimination. Next, we seek
to understand the drivers of that discrimination using
two ML explainability techniques: (1) permutation
importance to understand the impact of excluding
gender in the AB model and (2) SHAP values and
SHAP interaction values (Lundberg and Lee 2017,
Lundberg et al. 2019) in our state-of-the-art XGBoost
model (Section 4.3). This is because SHAP values and
SHAP interaction values cannot be created for model
ensembles. Before proceeding to the discussion of ML
discrimination, we review OVB, which drives LR
discrimination.

In the traditional statistical modeling process (per
Figure 2), it is well known that, when an LR model
has access to a comprehensive set of causal features, it
can estimate the true, unbiased learning model
parameters (Wooldridge 2015). Therefore, when an
important causal feature is excluded in data collection
(e.g., gender), the learned model parameter estimates
become biased in the statistical sense of the word (i.e.,
inaccurate); a phenomenon referred to as omitted var-
iable bias (Wooldridge 2015). Andreeva andMatuszyk
(2019) show that when gender is excluded from an LR
model, it creates OVB. Specifically, because men, the
less creditworthy gender, are a majority, the exclusion
of gender creates an upward bias in the parameter
estimates, leading to an increase in the rejection rates
of women compared with the model with gender. As
expected, OVB occurs in our data too (Online Appen-
dix S2), where we replicate the approach from
Andreeva and Matuszyk (2019).

Recall (from Section 1.2) that the ML modeling
process (Figure 2) alters the construction of the model
training procedure from that of LR, and the exclusion of
gender affects each additional step in the ML modeling
process—feature engineering, algorithm selection, feature
selection, and hyperparameter selection—which in turn,
changes the final learning model parameter estimation.
We focus our investigation on feature engineering and
feature selection as these steps are most impacted by the
exclusion of gender and leave the discussion of hyper-
parameter selection to Section 7. We first compute the
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permutation importance (using the feature importance
tool in DataRobot) for the ABmodels 1 and 2. To illustrate
the result visually, we add 10 manually generated gender
interactions with the top 5 features (5 for women, 5 for
men) to model 1. The permutation importance of the top
25 features for models 1 and 2 is illustrated in Figure 7, (a)
and (b), respectively. We observe the following.

Observation 6. When gender is included in the
ML model, gender interaction features account for 4
of the top 25 features and 2 of the top 10 features
(Figure 7(a)); gender is also selected as a feature (out-
side the top 25).

Observation 7.When gender is excluded from the ML
model, different features are selected by the algorithm
(6 of the top 25 features), with different permutation
importance rankings (21 of the top 25 features) com-
pared with when gender is included (Figure 7(b)).

Results from Observations 6 and 7 are a lower
bound on the number of affected features; gender
may have impacted engineered features not shown
(e.g., binning of external credit scores may be different
in M1 and M2).

We refer to this phenomenon where different fea-
tures are selected by the algorithm when gender is not
present as gender-blind feature selection. To better
understand the phenomenon, we investigate the fea-
ture engineering and feature selection in more detail
using SHAP values and SHAP interaction values. As
a reminder, we opted to use the XGBoost model for
this part of the investigation given the restrictions of
the SHAP interaction values (they cannot be calcu-
lated for the AB ensemble model).

We observe that certain features, like external credit
score 2 and annuity length, are always selected by the
algorithm, regardless of whether gender is included;
we refer to these as gender-neutral features. These fea-
tures consistently have the highest SHAP values (fea-
ture importance) and are very important for the final
prediction, accounting for 97.1% of the final 655 fea-
tures selected in model 1 and 97.7% of the final 659
features in model 2. Other features are selected by the
algorithm when gender is present but not when it is
excluded; we refer to these features as gender reliant.

The final set of features is gender redundant. When gen-
der is present, these features are “redundant” and
excluded by the algorithm in the automated feature selec-
tion step; when gender is excluded, however, they are
selected by the algorithm. We observe that these features
have very low SHAP values compared with gender-
neutral features and higher gender inference information
compared with gender-reliant features.

Next, we compute the SHAP interaction values
using a condensed feature set of the explanatory fea-
tures, given the computation requirements (Lundberg
et al. 2019). These values tell us the feature impor-
tance for every feature engineered pairwise interac-
tion and help us to understand why the gender-blind
feature selection phenomenon leads to discrimination.
We look specifically at the SHAP interaction values
between gender and the gender-reliant features and
between gender and the gender-neutral features
visualized in Figure 8.

Observation 8. The mean SHAP interaction values for
the gender-reliant features with gender are 19 times

Figure 7. (a) Permutation Importance of the Top 25 Features of the ABModel with Gender and Gender Interactions (M1).
(b) Permutation Importance of the Top 25 Features of the ABModelWithout Gender (M2)
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greater for women than for men; this finding is 2.5
times the difference of gender-neutral features.

This observation illustrates that predictions for
women rely more on the gender-reliant features than
predictions for men, and therefore, women are more
detrimentally impacted by the gender exclusion en-
forced by regimes 2 and 3. Summarizing, in ML, the
exclusion of gender prevents the algorithm from fea-
ture engineering (e.g., from creating interactions with
other features and gender). It also impacts algorithm,
feature, and hyperparameter selection. We observe that
certain gender-reliant features are excluded, and in their
place, gender-redundant features are selected. In this set-
ting, the exclusion of the gender-reliant features is signifi-
cantly more detrimental to women compared with men,
thereby increasing discrimination. This gender-blind fea-
ture selection phenomenon is vastly different from the
OVB that drives discrimination in traditional statistical
models; we show the ML discrimination is linked to
changes in the construction of the model training
procedure. This discussion is limited to the data set
that we use, and although that data set is from a real
fintech firm, to emphasize the generalizability of our
insights, we provide a stylized example in Online
Appendix S3.

7. Possible Approaches to Reduce
Discrimination

Finally, we consider what ethically minded fintech
firms can do to reduce gender discrimination given
the restrictions of the antidiscrimination regimes.

7.1. Approaches to Reduce Discrimination Under
Regime 2

Fintech firms under regime 3 are not able to collect
and therefore, use gender as a feature in their training
and screening models, which we now know leads to
discrimination (Section 5). Those under regime 2 are
prohibited from using gender as a feature in the train-
ing and screening models used for individual lending

decisions but are allowed to collect gender and use it
in other ways during the modeling process. Next, we
explore several possible approaches to reduce dis-
crimination for firms under regime 2:

1. down sampling the training data to rebalance gen-
der (i.e., undersampling the majority class (men) to
match the count of the minority class (women)), lead-
ing to the rebalanced down-sampled training data
(50%women/50%men, n � 42,136; DS:M2);

2. gender-aware hyperparameter tuning, which
involves creating a training model that tunes the hyper-
parameters using borrower gender data (we use the
XGBoost model and hyperparameters inspired by the
top Kaggle teams) and allows the training model to
learn about gender at an aggregate level before it is
retrained on the rebalanced down-sampled training
data without gender (HT:M2); and

3. up sampling the training data to rebalance gender,
which involves a firm collecting more data from the
minority class (women) to achieve a balanced sample (we
emulate this by “collecting” data from the borrower train-
ing data excluded during the creation of the minority
training data, resulting in the rebalanced collected training
data; 50% women/50%men, n� 168,548; US:M2).

We retrain the AB model using these three techni-
ques and compare the results with the AB model
without gender (AB:M2).

Observation 9.We find that down sampling the train-
ing data to rebalance gender (DS:M2) decreases dis-
crimination measured by PPV by 4.54%, decreases
predictive quality by 175 bps, and decreases firm prof-
itability by 4.47% (Observation 9 and Table 3).

Observation 10.We observe that gender-aware hyper-
parameter tuning (HT:M2) decreases discrimination
measured by PPV by 37.73%, decreases predictive
quality by 278 bps, and decrease firm profitability by
4.42% (Observation 10 and Table 3).

Observation 11. Lastly, we find that up sampling the
training data to rebalance gender (US:M2) decreases

Figure 8. Mean SHAP Interaction Values for Gender-Reliant Features (Those Selected by the AlgorithmWhenGender Is Present
but NotWhen It is Excluded) and Gender-Neutral Features (Those Always Selected by the Algorithm) AcrossWomen andMen
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discrimination measured by PPV by 24.47%, does not
impact predictive quality, and decreases firm profit-
ability by 1.46% (Observation 11 and Table 3). Accom-
panying discrimination results are depicted in Figure
9(a) for PPV and Figure 9(b) for WGMD.

Taken together, the key insight is that although
fintech lenders under regime 2 (e.g., countries in the
European Union) cannot use gender as a feature in the
training and screening models, they can use it to
perform several alternative discrimination-reducing ap-
proaches. The approach selected by a fintech firm will
depend on their threshold selection and their ac-
ceptance of the potential fairness-accuracy trade-off
between reducing discrimination and the reduced pre-
dictive quality and firm profitability. Fortunately, firms
in regime 2 jurisdictions have several possibilities to
reduce discrimination in models using data science
techniques, such as those discussed.

7.2. Discrimination-Reducing Techniques for Firms
Operating Across Jurisdictions

Here, we explore an additional approach that may
be technically feasible for a firm that operates in sev-
eral jurisdictions: a probabilistic gender proxy model
(PGP:M2). This approach involves first training an

ML model to predict gender or “impute” per Zhang
(2018) and then, using that gender prediction as a
feature in the screening model to predict default.
Barring distributional shift and data consistency, the
lender could use data from a regime 1 or 2 jurisdic-
tion to create a model to predict the gender of bor-
rowers and then, apply that model to predict gender
for applicants in the regime 3 jurisdiction. Our gen-
der prediction model achieved a fivefold crossvali-
dated AUC of 91.08%, implying that gender could, in
fact, be predicted with excellent accuracy from the
700+ other available features in our data. We tuned
the gender classification threshold to 20% to closely
match the predictions of the model with gender
(model 1), which we know (per Observation 1) has
lower discrimination and higher profitability.

Observation 12. We compare the PGP model (PGP:M2)
with theABmodelwithout gender (AB:M2) and observe
that discrimination measured by PPV decreases by
71.08%, predictive quality is not impacted, and firm
profitability increases by 0.13% (Observation 12 and
Table 3).

This finding illustrates the benefits of probabilistic
gender proxy modeling for applicants (reduced

Table 3. Observations 9–12: A Comparison of Possible Approaches to Reduce Discrimination (PPV and WGMD)
Accompanied by Predictive Quality (AUC) and Firm Profitability (Average Optimal Profit) Changes

Observation Model Discrimination (PPV) Discrimination (WGMD)
Predictive quality

(AUC)

Firm profitability
(average optimal

profit)

Compared with the average blender model with gender (AB:M1)
Observation 9 DS:M2 −4.54%

[−19.38%−+14.03%]a

(see Figure 9(a))

−21.50%
[−37.15% to −1.51%]a

(see Figure 9(b))

−175 bps: 76.22%
[75.37%−77.07%] vs.

AB:M2: 77.97%
[77.16%−78.79%]

−4.47%b

Observation 10 HT:M2 −37.73%
[−75.84%−+9.67%]a

(see Figure 9(a))

−30.37%
[−47.01% to −6.71%]c

(see Figure 9(b))

−278 bps: 75.19%
[74.33%−76.04%] vs.

AB:M2: 77.97%
[77.16%−78.79%]

−4.42%d

Observation 11 US:M2 −24.47%
[−59.76%−+2.79%]a

(see Figure 9(a))

−40.08%
[−43.35% to −44.85%]c

(see Figure 9(b))

Not impacted:
77.05%

[76.22%−77.88%] vs.
AB:M2: 77.97%
[77.16%−78.79%]

−1.46%e

Observation 12 PGP:M2 −71.09%
[−112.05% to −35.15%]a

(see Figure 9(a))

−25.74%
[−31.20% to −13.89%]c

(see Figure 9(b))

Not impacted:
78.10%

[77.28%−78.92%] vs.
AB:M2: 77.97%
[77.16%−78.79%]

+0.13%f

aAcross thresholds (5%–30%), the differences are statistically significant (p < 0.01, paired t test; see Section 3.1 for details).
b−50.40% to −0.01%.
cAcross thresholds (5%–30%), the differences are statistically significant (p < 0.01, paired samplesWilcoxon test).
d−59.30% to −0.01%.
eAll of the profit differences are statistically significant: 88% are negative differences (−35.90% to −0.1%), and 12% are positive differences
(0.01%–0.03%).
f0.01%–2.75%.
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discrimination) and fintech firms (no change to
predictive quality and increased profitability). Un-
fortunately, we determined that the methodology is
currently prohibited in the United States (the largest
jurisdiction under regime 3) and has been observed
to generate upward statistical bias in default pre-
dictions, albeit in the mortgage setting and not in
consumer credit (Chen et al. 2019). Down sampling,
gender-aware hyperparameter tuning, and up sam-
pling also cannot be implemented by fintech firms under
regime 3 (e.g., the United States) as they are prohib-
ited from not using but also, collecting gender,
which means that fintech firms under this regime,
like the Apple Card, are restricted in their ability to
measure and reduce discrimination.

7.3. Allowing for the Collection and Use of Gender
to Reduce Discrimination

Lastly, we return to the operational modeling guid-
ance of regime 1 regulations, which allow for both the
collection and the use of gender in the training and
screening models. Summarizing the findings of sev-
eral observations throughout the paper, we find
that the ML model, with gender, results in the low-
est discrimination (PPV, WGMD) across thresholds
(5%–30%), the highest predictive quality, and the
greatest firm profitability when compared with the
ML model that excludes gender, the ML approaches
that reduce discrimination in the absence of gender,
and the LR models. In short, our results suggest that

the best way to reduce bias in this setting is to use ML
models and allow for both the collection and the use of
gender.

8. Discussion and Conclusions
We use publicly available, real, feature-rich, and
highly multicollinear fintech data to investigate the
impact of three antidiscrimination legal regimes on
gender discrimination: regime 1, which allows for the
collection and use of protected attributes in both train-
ing and screening models; regime 2, which allows for
the collection of gender but prohibits its use as a fea-
ture in the training and screening models; and regime
3, which prohibits both the collection and the use of
gender in any model. We find that prohibiting the use
of gender as a feature in the screening model (per
regimes 2 and 3) leads to increased discrimination and
decreased firm profitability without significantly
impacting model predictive quality in both traditional
statistical and machine learning models. We find that,
across all antidiscrimination regimes, ML models are
less discriminatory, of better predictive quality, and of
higher profitability when trained on the data commonly
used by fintech firms because of differences in the con-
struction of the training procedure: feature engineering,
feature selection, and hyperparameter tuning. We deter-
mine that ML discrimination is driven by a novel phe-
nomenon: gender-blind feature selection, a process that is
vastly different from the omitted variable bias that
drives discrimination in traditional statistical models.

Figure 9. (Color online) (a) DiscriminationMeasured by PPV of ABModels with Gender (AB:M1),Without Gender (AB:M2),
and Four Possible Approaches to Reduce Discrimination (DS:M2, PGP:M2, HT:M2, US:M2). (b) Discrimination Measured by
WGMDof ABModels with Gender (AB:M1), Without Gender (AB:M2), and Four Possible Approaches to Reduce Discrimination
(DS:M2, PGP:M2, HT:M2, US:M2)
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In addition, we show that the seemingly subtle dif-
ference between regimes 2 and 3, allowing for the col-
lection of gender, presents fintech firms under regime
2 with four possible approaches to reduce discrimi-
nation, each with varying impacts to model predic-
tive quality and firm profitability: 1) down sampling
the training data to rebalance gender, 2) gender-aware
hyperparameter tuning, 3) up sampling the training
data to rebalance gender, and 4) probabilistic gender
proxy modeling. Although these approaches reduce
discrimination in our applicant data set, it is unclear
how they might impact applicant self-selection, either
persuading or dissuading individuals from applying
for credit from the fintech lender. This uncertainty
could be an important avenue for future research.

The overarching implication of our work is that the
growing adoption of algorithmic decision making in
nonmortgage consumer credit lending requires a
rethink of the antidiscrimination laws and their opera-
tional guidance, specifically with respect to the collec-
tion and use of protected attributes. Our analysis
points to the importance of allowing for the responsi-
ble collection and use of gender data, in line with the
operational guidance of regime 1 regulations. Allow-
ing fintech firms to collect protected attributes, like
gender, would, at minimum, give them the ability to
assess the potential bias in their model. Furthermore,
doing so could allow them to reduce discrimination
through approaches such as down sampling to reba-
lance gender, gender-aware hyperparameter tuning,
up sampling to rebalance gender, and probabilistic
gender proxy modeling. These approaches could also,
in theory, be leveraged to support affirmative action
(also referred to as positive discrimination) initiatives,
notwithstanding the critiques of the practice.

From a lender’s perspective, the findings can serve
as guidelines to revisit their existing data usage and
algorithm design processes. For an industry partner
involved in this work, residing in regime 1, the find-
ings are particularly interesting as the use of ML and
AI becomes more widespread for decision making in
the financial sector. Although there are disputes about
the reduced explainability in AI models and the
potential reduction of fairness driven by model com-
plexity (e.g., deep neural networks), the findings of
this work are supportive of pursuing sophisticated AI
model design and setting intraorganization data col-
lection and usage requirements, which include the
responsible use of personal attributes, like gender, as
part of an organization’s AI ethics guidelines.

Our work also paves the way for the fair economic wel-
fare of both financial institutions and individual custom-
ers by approving loans for customers who deserve the
financial support but are currently discriminated against
when traditional modeling approaches or regulatory-
binding guidelines are applied. The customers’ chances

for economic well-being are improved, and likewise, the
profitability of the lending company increases because of
a lower default risk. The collection and use of gender
should be supported by a strong customer communica-
tion strategy; the benefits of using personal attributes
should be well described and a suitable level of AI educa-
tion should be carried out to increase customer confidence
in the suggested approach.

Increased data access should, however, come with
greater firm accountability and responsibility. For
example, the Principles to Promote Fairness, Ethics,
Accountability and Transparency (FEAT) in the Use
of Artificial Intelligence and Data Analytics in Singa-
pore’s Financial Sector (Monetary Authority of Singa-
pore 2018)—to the development of which this paper’s
authors had the privilege to contribute—recommend
that lenders should be able to collect and use protected
attributes, like gender and race, in their training and
screening models but are responsible for discrimination in
the algorithmic output. This recommendation is contrary
to the situation in the United States, where lenders have
used the existing laws to elude responsibility for discrimi-
natory outcomes. For instance, Goldman Sachs did so
with their Twitter statement mentioned in Section 1: “we
have not and never will make decisions based on factors
like gender. In fact, we do not know your gender or mari-
tal status” (Franck 2019). To that end, as of late 2021, both
the United States and the European Union have proposed
regulatory guidelines for the responsible and ethical use
of artificial intelligence. Both draft regulations will likely
have implications for automated algorithmic decision
making in nonmortgage consumer fintech lending.

The U.S. draft regulation, titled “Maintaining Amer-
ican Leadership in Artificial Intelligence,” highlights
automated bias as a potential risk but does not suggest
specific actions to mitigate it. However, members of
the House of Representatives previously proposed an
“Algorithmic Accountability Act,” which offers more
structured guidance to firms. The act suggests that
users of automated algorithms perform a bias impact
assessment to mitigate potential discrimination. A con-
sequence of our findings is that, in the United States,
the ECOA will make it virtually impossible for lenders
to adhere to the new proposed act as they will not be
able to test for discrimination without first being able
to collect protected attributes, like race, disability, and
gender.

The European Commission's new draft regulation
titled the “Artificial Intelligence Act” categorizes AI
systems used for credit lending as high risk and speci-
fies certain mandatory requirements with regard to
training data, data governance and explainability,
reporting, robustness and accuracy, and human over-
sight. These requirements include, for example, ensur-
ing a sufficiently representative training data set. Two
of the possible approaches to reduce discrimination
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we discuss, specifically down sampling and up sam-
pling to rebalance gender, are methods that could
meet these requirements.

Alternatively, organizations could take a self-regulation
approach, as proposed by some legal scholars (Hadfield
2016), by developing fairness certification programs or
voluntary AI ethics guidelines. To date, we have worked
with several large, multinational banks and fintech firms
that have developed these kinds of voluntary AI ethics
guidelines in the absence of formal regulation.

Clearly, our findings show that there are inconsis-
tencies between the objectives of the existing antidis-
crimination regimes and their detrimental impact
when decisions impacting minorities are made by
algorithms. We consider one setting—consumer fin-
tech lending—and urge other researchers to continue
investigating the implications and drivers of other
forms of discrimination as well as potential solutions
in additional contexts and operational settings.
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